

공정 FMEA 도입

(1) 공정 FMEA 개요

공정 FMEA는 제품에 관련된 공정상의 고장모드를 확인하고 그 고장모드가 사용자에게 미치는 영향을 평가하여 제조 또는 조립 공정상의 원인을 파악, 고장원인의 개선을 관리에 초점을 주기 위해 중요공정의 변수를 확인한다.

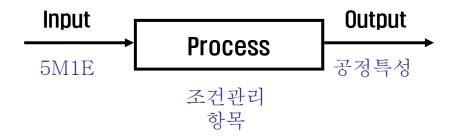
(2) 궁정 FMEA의 이점 및 활용

- 신규 기계/설비를 포함, 제조/조립공정의 주요 변경내용 분석가능
- 불량제품의 생산 가능성을 감소 ·방지토록 공정상의 결함 확인 기능
- 중점관리 항목을 확인
- 공정개선활동의 우선 순위 수립가능
- 공정변경에 관한 정보로 활용 가능
- 새로운 제조공정을 분석하는데 도움을 줌
- 다변량분석과 실험계획법(DOE)에서 고려되어야 할 잠재적인 변수 파악

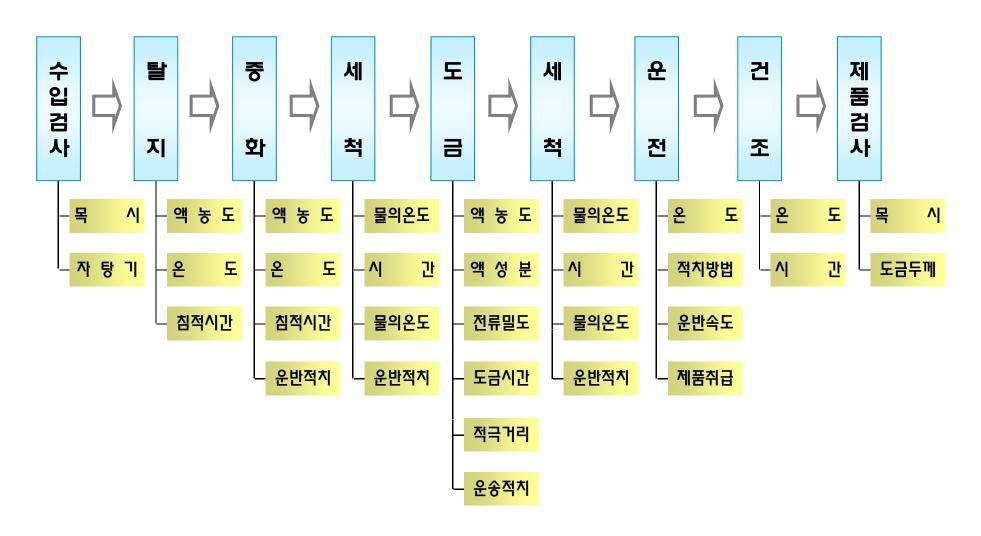
범례

(3) 공정흐름도

- 해당 공정의 공정흐름도(Flow-Diagram)를 작성한다.
- 흐름도는 제조 및 조립공정에 대한 팀의 모든 정보를 제공할 수 있어야 함
- ▶그 공정에서 무엇을 할 예정인가


○ 작업 ◇ 검사 → 이동

▶그 작업의 목적은 무엇인가


PROCESS FLOW DIAGRAM 부번: K 1583 부품명: Piezoelectric Switch 날짜: 00-04-01 궁정흐름 **INPUT OUTPUT** 재료공급 **Upstream Process Step** \bigcirc 10 유체온도 Plastic Housing Molded \bigcirc 40 작업자 변동 Tabs 존재에 대한 검사 \Diamond 45 부품차이 다음 조립에서 장착된 Switch 08 작업자 변동 Switch 방향에 대한 검사 ♦ 85

NOTE

- 1. In put의 요소로는 방법, 재료, 인원변동, 설비, 환경, JIG 기능, 측정 등이 변수로 정의되며
- 2. Out put의 요소로는 공정에서의 입력변수의 사용조건이나 운전조건관리의 항목으로 정의되어진다.

◎ 사 례 (도금공정) - 공정기능 블록도

(4) 특성 매트릭스

- 해당 매트릭스는 부품특성들이 어떤 공정작업들에 의해 영향을 받는지를 나타내는 도표이다.
- 공정흐름도가 완료되면 부품특성 매트릭스는 작성하여 모든 부품특성이 고려되어
 공정의 흐름이 구성되었는지 확인을 하는 용도와
- 부품특성에 직, 간접으로 미칠 수 있는 공정의 영향을 알아내는데 이용한다.
- 부품의 특성 및 공정의 특성은 좌측에 기록

ㅂ프트섟				공	정	순	서			
부품특성	10	20	30	40	45	50	60	70	80	85
Housing Material	X									
Housing diameter				X						
Tab length				X	X					
Switch Orientation									X	X

NOTE

- 1. 만일 부품특성을 관리하는 공정이 누락되었다면 이는 공정흐름도의 개정이 필요하다.
- 2. 동일한 부품특성이 여러 공정에 거쳐 표시가 되었다면 공정 FMEA시 여러 공정에서 고장모드를 해석 하여야 한다.

공정 FMEA전개

(1) 궁정FMEA 전개순서

- 공정 Flow 확인(공정 기능 파악)
- 하나의 설비 혹은 복수 공정기계가 최소의 분석 Level
- 대상공정의 설비 혹은 작업에 대해 위험평가 실시
- 과거의 고장 및 불량내용을 참조 예측되는 현상을 나열
- 고장모드가 발생하게 되는 고장 원인 예측
- 정해진 판정기준 참조

- 발생도 X 심각도 X 검출도
- RPN 100 이상이거나 발생도, 심각도, 검출도가8 이상이면 필히 대책수립
- 문제점 상태 Follow-up
- 개선 후 2차 평가 실시, 기준점 이상인 경우 재활동

공정 FMEA실행

(1) 공정 FMEA 항목의 작성

- 1) FMEA 번호 문서 추적을 위해 사용될 수 있는 FMEA문서 번호를 기입
- 2) 시스템, 서브시스템 또는 구성품의 이름과 번호 분석의 적당한 수준을 나타내고 분석되어야 할 시스템, 서브시스템 또는 구성품의 이름과 번호를 기입
- 3) 공정책임 책임 부서명 기입. 알고 있다면 공급자 이름 기입
- 4) 작성자 FMEA 작성 책임자의 이름. 전화번호. 회사명 기입
- 5) 모델 분석된 설계공정에 의해 이용되거나 영향을 받는 모델년도와 제품명을 기입
- 6) 완료예정일 계획된 양산시작일(SOP)을 초과하지 않는 초기의 FMEA완료예정일을 기입
- 7) FMEA 최초작성일 / 최근개정일 최초의 FMEA작성일자와 최근 개정일자를 기입
- 8) 핵심팀 팀의 책임있는 인원의 이름과 부서 기입 (모든 팀원 이름, 부서, 전화번호, 주소 등을 별도의 목록으로 권장)

(2) 궁정기능 / 요구사항

- 분석하고자 하는 공정 또는 작업의 간단한 설명
- 공정 또는 작업의 목적을 간결하게 기입
- 공정명과 공정의 번호를 기입할 것
- 위험평가와 공정흐름도를 기준하여 핵심공정을 선정하여 공정의 기능을 기록할 것
- 요구사항은 제품/재료 특성의 요구사항 즉 공정작업의 결과를 기록할 것
- 제품의 요구사항(고객요구)을 서술적으로 기록하여도 됨

(3) 잠재적 고장형태

- 정의
 - 설계의도 및 공정요구사항을 잠재적으로 충족시키지 못하는 공정에서의 작업방법
- FMEA 준비 시 입고 부품 / 자재는 정상이라는 가정 하에서 시작
- 고장은 발생할 수 있으나 반드시 발생하는 것은 아니라고 가정
- 공정엔지니어 / 팀은 공정흐름도를 조사하고 다음 질문을 하여야 하며
 이로부터 고장형태를 찾아낸다.
- ▶그 부품은 이 공정에서 왜 Reject 될 수 있는가?
- ▶그 부품이 이 공정작업에서 왜 사양을 충족시키지 못할 수 있을까?
- ▶다음 공정에서 무엇이 불만으로 나타나는가?
- ▶최종 고객은 무엇을 불만으로 여길 것인가?
- 공정 FMEA의 시작은 유사공정의 비교와 유사 구성품과 관련된 고객불만을 검토하는 것
 - ▶공정 불량유형, 고객불만유형, Claim 유형

NOTE

- 1. 잠재적 고장형태는 특정작업의 부적합을 의미하며, 그것은 연속적인 작업의 잠재적 고장형태와 연관된 원인일 수 있거나 또는 이전 작업의 잠재적 고장형태와 연관된 원인일 수도 있다.
- 2. 구성품, 서브시스템, 시스템 또는 공정 특성에 기인되는 특별한 작업의 각 잠재적 고장형태를 List한다.
- 3. 전형적인 고장형태의 예:

```
▶구부러짐 (Bent) ▶균열 (Crack) ▶접지 (Grounded)
```

▶굳음 (Binding) ▶변형 (Deformed) ▶단선 (Open circuited)

▶버어 (Burred) ▶더러움 (Dirty) ▶단락 (Short circuited)

▶취급손상 (Handling damage) ▶부적절한 설치 (Improper set-up)

▶공구마모 (Tool worn) 등

- 4. 잠재적 고장형태에 대해 브레인스토밍 한다.
- 5. 현 공정에서의 고장형태는 이전공정/작업에서의 고장형태의 결과일 수 있다.

(4) 고장의 잠재적 영향

• 정의

고장의 잠재적 영향은 고객에게 미치는 고장형태의 영향 (고객-다음 작업, 후속작업, 작업장, 판매자, 사용자, 정부법규 등)

- 고객이 인식하거나 경험할 수 있는 것으로 고장의 영향을 설명
- 과거 또는 대용공정 FMEA, 설계 FMEA, Warranty Data, Recalls, 불만보고서, 시장조사 보고서 등을 검토하여 이미 알려진 잠재적 영향을 확인한다.
 - 후 공정 작업자나 고객이 작업 중 또는 사용 중 에 느낄 수 있는 사항.

EX) 후 공정: 고정 할 수 없음, 맞지 않음, 연결이 않됨, 구멍을 뚫을 수 없음,

작업자를 위험케 함.

사용자: 소음, 거칠음, 이상작동, 오동작, 작동불능, 기능부전, 악취,

조잡한 외형.조작이 힘 등.

NOTE

1. 최종 사용자에 대한 고장영향의 예(제품 또는 시스템 성능의 용어)

▶수음

▶거칠음 ▶조잡한 외관

▶불규칙적인 작동 ▶작동불능 ▶불쾌한 냄새

▶불안정성 ▶작동저하 ▶간헐적인 작동

▶통풍불량

▶과도한 작동력 요구 ▶차량 컨트롤 저하

2. 고객이 다음 작업 / 순차작업 / 작업장일 경우 고장 영향의 예(공정/작업성능의 용어)

▶조임불가 ▶조립불가 ▶Bore / Tap 불가

▶연결안됨

▶장착불가 ▶불일치

▶접촉면 불일치 ▶장비손상 ▶작업자 위험

3. 잠재적 고장영향 사례

▶다음작업 : 작업 #20에서 구멍을 뚫을 수 없음

▶후속작업 : 그 부품을 조립할 수 없음

▶작 업 장 : 작업자가 위험하며 금형이 파손

▶제 품 : 사용 시 작동불능

▶고 객 : 과도한 이음으로 불만스러움

▶정부법규 : F/MVSS 108조에 저촉될 수 있음

(5) 심각도

- 정의
 - 심각도란 잠재적 고장형태가 고객에게 미치는 영향의 심각한 정도를 등급으로 표시한 것
- 심각성 정도의 평가는 공정엔지니어 / 팀의 경험과 지식영역 밖에 있을 수 있다. 이러한 경우 설계 FMEA. 설계엔지니어 또는 다음 공정 엔지니어의 지도를 받아야 한다.
- 심각도는 평가기준에 따라 팀의 합의 후 등급을 결정할 것.

NOTE

- 평가기준은 FMEA 추진팀에 의해서 변경되어질 수 있지만 한번 결정된 사항에 대해서는 일관성 있게 반영되어야 한다.
- 일반적으로 공정 엔지니어는 점수가 낮게 품질, 서비스엔지니어는 높은 점수로 평가하게 된다.

1) 심각도 평가기준 1

영향	기준 : 영향의 심각도	등급
경고 없는 위험	설비 또는 조립작업자를 위험하게 할 수 있다. 잠재적 고장형태가 생명 및 환경에 영향을 미치거나 정부법규에 대해 불일치사항을 포함할 때 매우 높은 심각도 등급이 부여된다. 고장은 사전 경고없이 발생될 것이다.	10
경고 있는 위험	설비도는 조립작업자를 위험하게 할 수 있다. 잠재적 고장형태가 안전 및 환경에 영향을 미치거나 정부법규에 대해 불일치사항을 포함할 때 매우 높은 심각도 등급이 부여된다. 고장은 사전 경고 후 발생될 것이다.	9
매우 높음	생산라인에 중대한 혼란을 가져온다. 제품의 100%가 폐기될 수 있다. 제품 / 부품이 작동하지 않고 주요기능이 손실된다. 고객은 매우 불만족해 한다.	8
높음	생산라인에 혼란을 가져온다. 제품은 선별되어져야 하고 제품의 대부분(100%미만)이 폐기될 수 있다. 시스템은 작동하나 성능수준은 떨어진다. 고객은 불만족해 한다.	7

1) 심각도 평가기준 2

영향	기준 : 영향의 심각도	등급
보통	생산라인에 혼란을 가져온다. 제품의 대부분(100%미만)이 폐기될 수 있다. (선별없이) 제품/부품은 작동하지만 몇 가지 편의 부품이 작동치 않는다. 고객은 불편을 겪는다.	6
낮음	생산라인에 혼란을 가져온다. 제품의 100%가 재작업 될 수 있다. 제품/부품은 작동하자나 몇 가지 편의 부품이 성능이 떨어진 채로 작동된다. 고객은 다소 불만족해 한다.	5
매우 낮음	생산라인에 혼란을 가져온다. 제품은 선별되어져야 하고 제품의 대부분(100%미만)이 재작업될 수 있다. Fit & Finish / Squeak & Rattle 항목이 불일치한다. 대부분 고객이 인지하는 결함	4
경미	생산라인에 혼란을 가져온다. 제품의 대부분(100%미만)은 라인을 중단하지는 않으나 작업장 밖에서 재 작업이 이루어질 수있다. Fit & Finish / Squeak & Rattle 항목이 불일치 한다. 평균적인 고객이 인지하는 결함	3
매우 경미	생산라인에 혼란을 가져온다. 제품의 대부분(100%미만)은 라인을 중단하지 않고 작업장 내에서 재 작업이 이루어질 수 있다. Fit & Finish / Squeak & Rattle 항목이 불일치 한다. 예민한 고객이 인지하는 결함	2
없음	영향 없음	1

(6) 분류

- 추가적인 공정관리가 요구되는 구성품, 하위시스템, 시스템에 대한 특별한 제품 특성 (<예> Critical, Key, Major, Significant) 분류 시 사용
- 이러한 분류가 공정 FMEA에서 파악되면 설계 Engineer에게 통보
 - → 설계 FMEA로 이동

(7) 고장의 잠재적 원인 / 매커니즘

- 공장의 잠재적 원인은 고장형태에 대한 고장원의 범위이다.
- 공정FMEA팀은 2가지 가정 하에 원인을 기술
 - a. 작업대상인 부품/재료는 양품임을 가정한다.

부품 설계에 문제가 없음을 가정하고 그 부품이 설계결함 또는 이전의 어떤 문제(외주업체.

조립상의 과실)가 아님을 가정

<예> ▶Torque 낮음

▶재료 투입속도가 너무 빠름

▶공기압이 너무 낮음 ▶Limit Switch 중심이탈

b. 변동의 유입원을 고려한다.

예를 들어 외주부품 /재료 또는 이전 공정에서의 부품/재료가 포함될 수 있다.

<예> ▶재료가 너무 단단함/무름/취성 ▶치수가 시방과 불일치

• 고장원인의 예

▶부적절한 토크 : 과다, 미달

▶부정확한 게이지 측정

▶불충분한 윤활 또는 윤활되지 않음

▶부적절한 용접 : 전류, 통전시간, 가압력

▶부적절한 열처리 : 시간 온도

▶부품 누락 또는 오장착

NOTE

- 1. 고장형태의 원인이 하나로만 연관된다면 FMEA는 공정이 완전하다고 판단
- 2. 일반적으로 공정관리의 여러 인자가 원인으로 나타나며 시정조치 및 관리를 위해서는 실험계획법이 고려되어야 함.

(8) 발생도

- 파악된 원인/매커니즘의 발생할 가능성
- 발생도의 등급은 일관성이 보장되어야 함.
- 발생도 평가방법
- ▶Cpk(계량치 Data) 치우침을 고려한 공정능력지수
- ▶고장 Data 누적치(계수치 Data)
- ▶주관적인 기준(판단)

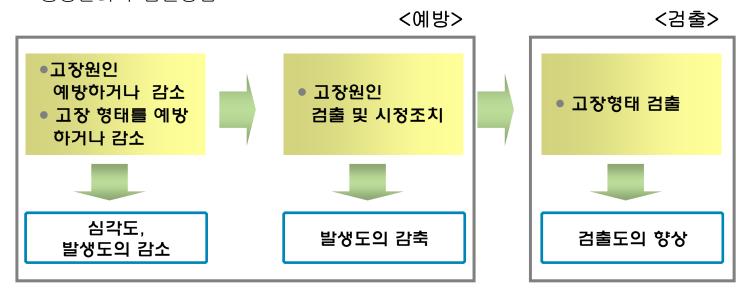
	이용방법	하기 Column에 기초하여 발생등급 선정
공정이 통계적 공정관리 (SPC)하에 있다.	통계적인 Data (공정능력 또는 실재산포)	C_{pk}
공정이 대용 또는 과거의 공정과 유사하다.	대용 또는 유사공정을 통한 통계적인 Data	C_{pk}
유사 또는 대용품의 실패이력의 이용이 가능	과거 고장누적치 Data & 생산결함율	CNF / 1000 고장누적치
신공정 또는 통계적 Data의 이용불가	Engineering 판단	주관적인 기준 (팀 합의에 의한)

NOTE

(Cumulative Number Failure)

- 1. 발생도는 가능하면 계량치 Data → 계수치 Data → 팀의 주관적 합의에 순서로 할 것
- 2. 팀의 주관적 합의는 각 원인 및 매커니즘에 대하여 팀원각자가 평가하고 최종합의 후 팀장이 결정한다.

1) 발생도 평가기준


고장 확률	고장가능비율	Cpk	등급
메이노이 그자이 되어 되어 거시다	2개중 1개 이상	<0.33	10
매우 높음 : 고장이 거의 필연적이다.	3개중 1개	≥0.33	9
높음 : 고장발생이 잦은 이전공정과 유사한 공정이	8개중 1개	≥0.51	8
일반적으로 관련되어 있다.	20개중 1개	≥0.67	7
보통 : 때때로 고장발생을 경험한 이전공정과	80개중 1개	≥0.83	6
유사한 공정이 일반적으로 관련되어 있다.	400개중 1개	≥1.00	5
그러나 중요한 정도는 아님	2,000개중 1개	≥1.17	4
낮음 : 유사공정과 관련되어 독립된 고장발생	15,000개중 1개	≥1.33	3
매우 낮음 : 거의 동일한 공정과 관련되어 독립된 고장 발생	150,000개중 1개	≥1.50	2
희박: 고장이 거의 일어나지 않음 거의 대부분 동일한 공정과 관련되어 어떠한 고장도 없음	1,500,000개중 1개 이하	≥1.67	1

NOTE

1. 유사부품/공정에서의 폐기불량 Data 0.1%이다. 이 경우에 고장가능 비율을 1000개중 1개의 폐기이므로 평가기준에 따르면 5와 4사이에 위치한다. 이 경우 높은 점수인 5로 발생도를 평가한다.

(9) 현 공정관리

- 고장형태의 발생을 가능한 범위까지 작업공정에서 예방 또는 검출하는 관리방안을 설명하거나 제조 또는 조립공장내의 후속공정에서 고장형태를 탐지하기 위해 이용되는 현행처리방법을 말한다.
- 예방은 Fool-Proof, 자동화된 관리, Setup, 설치검증, SPC 관리 등
- 관리는 Audit, 체크리스트, 검사, 연구실시험, 교육, 설비점검 보전 등
- 공정관리의 접근방법

NOTE

- 1. 현 공정관리는 공정에서 불량이 발생되었다는 가정 하에 제품 출하 이전에 검출할 수 있는 방법들의 기술을 말한다.
- 2. 현재의 관리방법이 없으면 없음으로 표시할 것.
- 3. 공정관리 예

제품감사 감 공정 파라메터 관리 사 SPC관리 검사자동화 F/ Proof 시 한도견본 감시카메라

순회검사검공정검사사최종검사성능검사

설치검증
기 예방보전
타 검사구관리 측정기관리

(10) 검출도(D)

- 정의(I)
 - 유형(Ⅱ)의 현 공정관리에 의해 잠재적 원인/메커니즘을 검출할 확률의 평가
- 정의(II)
 - 부품 또는 구성품이 제조공정/조립장소를 떠나기 전에 유형(III)의 현 공정관리에 의해 고장형태를 검출할 확률의 평가
- 고장이 발생되었다고 가정하고 모든 현 공정관리의 능력을 평가
- 섣불리 검출도가 낮다고 추측금물, 발생도가 낮을 수 있음
- 무작위 품질체크는 독립적으로 존재하는 결함을 검출할 가능성이 없으면, 검출도 등급에 영향을 미치지 않음
- 검출도를 관리하는 유효한 방법은 통계적 이론에 의해 수행되는 샘플링임

NOTE

- 1. 만일 고장의 검출도 관리수단으로 100% 자동 게이지 검사를 수행한다고 표시되었으면 FMEA팀은 ① 게이지 상태 ① 게이지 검교정 © 게이지 R&R ② 게이지 고장가능성을 고려하여야 한다.
- 2. 만일 100% 육안검사에 의하여 검출된다고 기술되면 100% 육안검사는 효율이 85%이하이므로 검사원의 수 및 능력, 고장모드의 본성(명확, 애매)을 평가한다.

1) 검출도 평가기준

검출도	기준: 검출도는 다음/연속 공정 또는 제조/조립 장소에서 부품이 이송되기 전에 공정관리에 의해 검출될 확률	튱급
절대적으로 불확실	고장형태를 검출하기 위해 사용할 수 있는 관리방안이 없음	10
매우 희박	현관리에 의해 고장형태가 검출되기 매우 희박함	9
희박	현관리에 의해 고장형태가 검출되기 희박함	8
매우 낮음	현관리에 의해 고장형태가 검출되기 매우 낮음	7
낮음	현관리에 의해 고장형태가 검출되기 낮음	6
보통	현관리에 의해 고장형태가 검출되기 보통	5
다소 높음	현관리에 의해 고장형태가 검출될 확률이 다소높음	4
높음	현관리에 의해 고장형태가 검출될 확률이 높음	3
매우 높음	현관리에 의해 고장형태가 검출될 확률이 매우높음	2
거의 확실	현관리에 의해 고장형태가 검출될 확률이 거의 확실하게 검출됨. 신뢰성 있는 검출관리법이 유사공정에서 알려져 있음	1

NOTE

- 1. 어떤 고장형태에 대하여 탐지해낼 관리수단의 성능에 대해 모르거나 추정이 불가능한 경우 검출 등급 10을 부과한다.
- 2. 고장모드에 대하여 열거된 공정관리 방법이 여러 개인 경우, 각각의 검출등급을 추정하고 가장 낮은 검출 등급을 선택한다.

(11) 위험우선 수 (Risk Priority Number)

- 위험 우선 수 (RPN) = 심각도(S) X 발생도(0) X 검출도(D) (Severity) (Occurrence) (Detection)
- 위험 우선 수는 SXOXD의 결과이며 공정위험에 대한 측정치
- RPN값은 공정개선의 우선 순위 결정한다.
- 일반적으로 조치가 필요한 수준은 RPN 100이상 또는 80이상 일 때 시정조치를 시행한다.
- RPN 값과 관계없이 심각도가 높은 경우 특별한 주의 필요
- 검출도가 높은 경우(검출능력부족) 발생률이 낮은 경우가 있으므로 면밀히 검토

- 1) 전자제품의 공정의 RPN(Risk Priority Number) 평가기준(예)
 - ① 심각도(Severity)

No.	영향력의 정도	점수
1	고객(다음공정)에 영향이 거의 없고 품질상 하자가 없는 경우	1~2
2	한도견본 내의 양품으로 고객(다음공정)에 미치는 정도가 거의 없는 경우	3~4
3	고객(다음공정)에 가벼운 불만을 느끼고 간단한 수리작업이 필요한 경우	5~6
4	고객(다음공정)에 불만을 느끼고 반드시 재투입 작업이 필요한 경우	7~8
5	고객(다음공정)에 치명적인 클레임을 제기하고 폐품으로 처리하는 경우	9~10

발생도(Occurrence)

No	불량발생 빈도	점유율	공정 불량율	고객불량율	점수
1	관계가 아주 적다(Remote)	0.5% 미만	0.05% 미만	0.012% 미만	1
2	관계가 아주 낮음(Very-Low)	0.5% 이상	0.05% 이상	0.012% 이상	2
3	관계가 보통 낮음(M-Low)	1.0% 이상	0.08% 이상	0.020% 이상	3
4	관계가 낮음(Low)	2.0% 이상	0.12% 이상	0.030% 이상	4
5	관계가 보통(Moderate)	3.0% 이상	0.20% 이상	0.050% 이상	5
6	관계가 中 보통(median-M)	5.0% 이상	0.30% 이상	0.080% 이상	6
7	관계가 보통 높음(large-M)	8.0% 이상	0.50% 이상	0.120% 이상	7
8	관계가 높음(high)	12.0% 이상	0.80% 이상	0.200% 이상	8
9	관계가 보통 높음(Moderate High)	20.0% 이상	1.20% 이상	0.300% 이상	9
10	관계가 아주 높음(Very High)	30.0% 이상	2.00% 이상	0.500% 이상	10

③ 검출도(Detection)

No.	검사(관리)방법에 따른 검출 가능성	검출정도	점수
1	거의 확실하게 공정에서 자동으로 검출한다.	95% 이상	1~2
2	불량(문제)상태를 충분히 검출한다(Good Chance)	80~94%	3~4
3	불량(문제)상태를 보통 검출한다(May)	50~79%	5~6
4	불량(문제)상태를 검출하기 힘들다(Poor Chance)	10~49%	7~8
5	불량(문제)상태를 검출 할 수 없다(Probably)	10% 미만	9
6	불량(문제)상태를 전혀 검출할 수 없다(None)	0%	10

2) 반도체 공정의 RPN(Risk Priority Number) 평가기준(예)

	영향력9	의 정도	튱급		
심각도	(1) 고객에게 끼치는 영향이 거의 없다				
	(2) 고객이 가벼운 불만을 느끼고 일부 재	작업이 필요한 경우	3~5		
(severity)	(3) 고객이 불만을 느끼고 반드시 재작업이] 필요한 경우	6~8		
	(4) 제품이 작동하지 않는 경우		9~10		
	불량발생 가능성	불량발생 비율	튱급		
	불량발생이 거의 없다.	$+ F_{\sigma}(Colr > 1.67)$	1		
	공정이 통계적 관리상태에 있다.	$\pm \mathcal{F}_{\sigma}(\mathrm{Cpk} \geq 1.67)$	1		
	비교적 적게 발생한다.	± (G (1.22 < Colo > 1.67)	2		
ы.м.	공정이 통계적 관리상태에 있다	$\pm 4\sigma (1.33 \le \text{Cpk} \ge 1.67)$	2		
발생도	가끔 발생한다.	L C = (1.00 < C = 1 > 1.22)	0		
(occurrence)	공정이 통계적 관리상태에 있다.	$\pm {\sigma} (1.00 \le \text{Cpk} \ge 1.33)$	3		
	자주 발생한다.	40개 중에 1개 발생	7		
	공정이 통계적 관리상태에 있다.	20개 중에 1개 발생	8		
	피어전 브라이 바세하다	8개중 1개 발생	9		
	필연적 불량이 발생한다.	2개중 1개 발생	10		
	관리방법에 따라 검출할 수 있는 가능성				
	불량검출 가능성 95% 이상		1~2		
고 ************************************	80%~95% 미만				
검출도 (detection)	50%~79%				
(detection)	10%~49%				
	10% 미만		9		
	검출방법이 전혀 없음		10		

3) 심각도 발생도 검출과의 관계

듕급	심각도	발생도	검출도
10	경고 없는 위험	매우 높음	절대적 불확실
9	경고 없는 위험	베구 코급	매우 희박
8	매우 높음	높음	희박
7	높음	<u> </u>	매우 낮음
6	보통		낮음
5	낮음	보통	보통
4	매우 낮음		다소 높음
3	경미	메이나이	노으
2	매우 경미	매우 낮음	매우 높음
1	없음	희박	거의 확실

NOTE

1,4,7,10 간격이 일반적으로 가장 적절한 것으로 고려된다.

4) 위험 우선 수 (RPN)의 검토

심각도	발생도	검출도	RPN	결과	대책
1	1	1	1	이상적인 상태	필요없음
1	1	10	10	보장되는 상태	필요없음
10	1	1	10	고장이 고객까지 안감	필요없음
10	1	10	100	고장이 고객까지 도달	검출도 향상
1	10	1	10	종종 고장발생 비용이 많이 드나 검출은 가능	공정의 개선
1	10	10	100	종종 고장발생 고객에게 도달	검출도 향상 공정개선
10	10	1	100	큰 영향을 주는 고장 발생	공정개선
10	10	10	1000	Bog-Trouble!	검출도 향상 공정개선

(12) 권고조치사항

권고조치사항의 목적은 심각도 발생도 검출도의 등급을 줄이기 위한 것이다.

- 시정조치는 높은 우선 순위(RPN>100)와 치명적인 항목(SC)을 우선 조치
- 고장원인이 불분명하면 실험계획법에 의해 결정
- 관련 부서는 시정조치의 추진을 효과적으로 수행
- 공정개선 및 설계개선을 포함할 것(설계 FMEA로 이동)
- 검사빈도의 증가는 긍정적인 조치내용이 아님(비용의 증가)
- 결함의 검출보다는 결함의 예방이 강조되는 조치 실시

NOTE

- 1. RPN 값이 낮은 경우/특정원인에 대한 권고조치 사항이 없으면 해당란에 없음이라고 기입
- 2. 권고조치는 공정의 변경이 완료되어야 하며 조치내용에 적용일자를 포함하여 기입한다.
- 3. 조치가 완료되면 공정표준문서(관리계획서, 작업표준서, 검사기준서)의 개정을 검토하여 해당시 개정을 실시한다.

(13) 조치 후 RPN 계산

- 시정조치가 완료되면 확인 후 심각도, 발생도, 검출도의 결과를 평가하고 RPN값을 기록한다.
- 모든 조치후의 RPN은 검토되고 기준값 이상 나오는 경우 재시정 조치를 실시하여야 한다.
- RPN값이 기준값 이상인 경우 특별특성으로 선정하여 분류란에 표시할 것

(14) 후속 조치

- FMEA는 살아있는 문서로서 공정개발단계뿐 아니라 양산 이후에 발생하는 변경사항도 주기적으로 검토 개정하여 지속적으로 관리되어야 한다.
- 공정책임자는 모든 권고조치 사항이 수행되고 확인되었다는 것을 보장할 책임이 있다.
- 양산후 3개월 이상 고객에게 납품 후 회수되는 고객 클레임과 시장 불량률 공정불량을 검토하여 FMEA이 유효성을 검증하여야 한다.

(15) 공정 FMEA 양식 및 작성 사례

잠 재 적 고장형태 및 영향분석 (공정 FMFA)

							(53 FMCA)			FMEA번호	PD 0241				(1))
부품 Front Doo	r L.H./H8HX-	000-A	2	공정책임	생산기술	ENG.	/ASS'Y OPERATION 3			페이지	1 장중	2				
모델년도/차종		\succ	<u> </u>	_	일 1996.12		<u> </u>			작성자	사명감/조립직				4)
핵심팀 <u> </u>			- 보전				Ŏ	8		FMEA최초 작성일_		<u>최</u> 근개정일 9 <u>6.11.2</u>	24	(7	<u>Ś</u>
									위			조치결과	22)		_
공정 기능 일 구사항	잠재적 고장형태 10	고장의 잠재적 영향 11) (심 각 도 #	원 (의 잠재적 인/구조 14	발 생 년 15	현 공정관리 16	검출 년	제 아 지 수 (18)	권고조치사항	책임자 및 목표 완료예정일	조치 내용 21	심 각 도	逝 챙 너	검 출 도	위 해 우 선 순 위
도어내부에 왁스 수동 도포	지정된 표면의 왁스 도포막이 불충분하다.	다음을 초래한다. ·녹으로 기인된	7		흥분한 깊이		film두께(깊이)와 도포 막을 매시 또는 매교대 마다 육안 검사	5		의 스프레이기 멈춤위치 추가	1996-12-06	멈춤위치 추가, 라인의 스프레이기 점검	7	2	5	70
부식진행을 늦추기 위해 도어 안쪽		수차례도장으로 인한 외관 불만족								자동 스프레이	1997-02-01	동일 라인에 여러 도어가 작업되므로 취소				_
하단 표면에 최소의 왁스로 도포한다.		· 내부 도어 부품 의 기능저하		- 점도가 - 온도가 - 압력이	헤드 막힘 너무 높음 너무 낮음 너무 낮음		시작 및 공회전 후에 스프레이 패턴시험과 헤드를 깨끗이 하기 위한 예방보전프로그램 운영			점도, 온도, 압력의 3인자에 대한 실험계획법 실시	1996-12-01	온도 및 압력관리 한계가 설정되고 관리한계가 설정된 관리도는 공정이 Cpk=1.85에서 관리 되고 있다는 것을 보여줌	7	1	3	21
				충격으로	인한 헤드 변형	2	헤드를 보전하기 위한 예방보전프로그램 운영	2	28	없음						i
		SA	AMI		시간 부족	8	중요부위의 도포막을 검토하기 위한 작업 지침 및 로트 샘플링 (도어 10EA/1교대)	7		스프레이 타이머 설치	1996-11-24	자동스프레이 타이머 가 설치됨 작업자가 스프레이를 시작하고 타이머 콘트 롤러가 종료한다. 관리도는 공정이 Cpk=2.05에서 관리되고 있다는 것을 보여줌	7	1	7	49
			Ш													ı

(16) 공정FMEA-Check List

공정FMEA-Check List -1

아래의 Check List를 이용하면, 해당 공정 FMEA의 완료를 확인하는데 도움이 된다. 하기 질문사항에 대한 모든 답이 YES이어야만 한다.

Preliminaries 평		FMEA팀이 조직되었는가?						
(예비사항)	가	Background Information 명확히 점검하였는가/						
Process		공정흐름도는 작성되었는가?						
Flow chart		해당부품특성은 확인되어 평가되고 각 작업별로 열거 되었는가?						
		해당 공정특성의 각각의 작업별로 열거되었는가?						
		수입변동원인은 확인되었고 어디에 해당하는지 명확한가?						
Header inform		표제란들은 빠짐없이 기입되었는가?						
목적/기늉		표제란들은 빠짐없이 기입되었는가?						
고장 모드		그 부품이 어떻게 reject될 수 있는가? 라는 물음과 관련하여 고장모드들이 열거						
		되었는가?						
		고장모드들은 해당작업에서 만들어진 제품특성들을 포함하는가/						
		부품특성이 범위를 習어날 경우 Reject되는가?						
		고장모드들은 inspection/testing 영역을 포함하는가?						
		(즉, 양품의 reject 또는 불량품의 axxept)						
		어떤 고장모드가 후 공정에 악영향을 미칠 경우, 그 고장모드가 후공정의 원인으						
		로 list되는가?						
		또한 후공정의 고장모드는 확인되었는가?						

공정FMEA-Check List -2

고장영향	평 가	설비작업자 및 최종 고객에게 미치는 잠재적 악영향이 고려되었는가? 하기 사항에 미치는 고장모드의 충격과 관련하여 그 영향이 기술되었는가? >후공정 >제품 >법규 >차기 USER(제조 또는 조립공장) >최종고객
고장원인		해당공정에서 악화될 수 있는 것들은 확인되었느가? 원인들은, 확인 또는 관리될 수 있는 특성과 관련하여 기술되었는가? 공정특성들이 고려되었는가? 설계적 취약점들이 고려되었는가? 해당 작업장으로 유입되는 부품 및 재료들이 고려되었는가? 작업자의 행동이 고려되었는가?
현 공정관리		불량품을 탐지하기 위해 실행될 수 있는 관리수단이 열거되었는가? 그 관리수단은 불량품이 해당제조/조립공장을 떨어나기 전에 불량품을 탐지할 수 있는가? 그 관리수단들은 예방용인지 탐지용인지 확인되었는가?
심각도 듕급		등급은 고장모드에 대한 가장 심각한 영향에 기초하였는가? 그 등급은 설계 FMEA에 나타난 등급과 일치하는가?
발생도 등급		그 등급에는 고장모드 발생을 감할 수 있는 예방수단의 능력이 고려되었는가?

공정FMEA-Check List -3

검출도 듕급	평 가	등급은, 그 부품이 해당 제조/조립 공장을 ^쬠 어나기 전에 고장모드를 탐지할 수 있는 현행관리수단의 효율에 기초하는가?
분류		Critical특성 및 그 관리수단이 명확한가? Critical특성은 공정(부품) 특성으로 확인되었는가? Critical특성들 및 그 관리수단들이 설계담당자에게 전달되었는가?
RPN		RPN 값들은 높은 값부터 순서가 매겨졌는가?
권고조치 사 항 (대 책)		Critical특성의 위험성을 감하기 위한 공정조치들이 기록되었는가? Critical특성들에 대한 특정관리수단들이 확인되었는가? Critical특성들이 밝혀졌는가? 고장모드RPN이 가장 높은 것들에 대한 치유책들이 고려되었는가? 추천조치들에 대한 시점 및 책임구는 명확하게 기술되었는가? 탐지보다는 예방조치들이 적절하게 열거되었는가? 잠재적으로 위험한 고장 모드률의 발생을 감하거나 제거할 조치들이 고려되었는가?
Follow-Up		PRN 값이 높은 값부터 열거되었는가?

관리계획서 양식

관 리 계 획 서

(1)	시작품		양산 선행		양 산	담당>	자/전화	번호(7)		Š	최초 작성	일자(11)	개정일지	}(10)
관리계															
부품반]호/최신변]경 수준	(3)			핵심팀(8)				고객 기술 승인/일자(요구서)(12)					
부품명 / 설명(4)						공급자/공장 승인 /일자(9)				고객 품질 승인/일자(요구서) (13)					
공급자/공장(5) 업체코드(8)						기타 승인/일자(요구서) (14)				기타 승인/일자(요구서) (14)					
부품	ਹ ਹ ਜ਼			Ê	투 성		ㅌ버		방 법						
/ 공정	공정명 /작업 설명	제조를 위한 기 장치, 지그, 공	지그, 공	7	번호	제품	공정	특별 특성 분류	제품/ 공정사		평가 측정	샘 플		관리	시정 조치
번호 (15)	(16)	(17)			(18)	(19)	(20)	(21)	양/공 차(22	7_	방법 (23)	크기	주기	방법 (25)	계획 (26)

FMEA 선정기준, 실시시기, 실시 결정자

구분	연구단계	설계단계	생산준비단계		
선정 기준	 설계구상이 신규 혹은 대폭적으 신제품에서 특히 신뢰성을 고도 기존의 제품에서 고장형태 등의 않았기 때문에 많은 설계 문제 	 설계 FMEA를 실시한 전체제품의 제조공정. 많은 제품품질 문제가 발생하고 있는 제조공정 			
실시 시기	• 연구단계의 도면 작성시	· Layout 도면 작성시	· 공정계획단계에서 공정의 개략적인 구상이 완성된 시점에서 설비 조달 전 까지 완료.		
실 시 결정자	기술부장이 독자적으로 결정	기술부장이 생산기술 부장, 공장장과 협의 하여 결정	· 자체생산품 : 생산기술부장 · 구매품 : 공장장		
검토회	주관 : 기술부참여 : 관련 각 부문의 전문 스	텝 (Cross Functional Team)	 주관: 생산기술부 혹은 공장장 참여: 기술부, 품질보증부, 구입처, 기타 전문 Staff 		

FMEA 실시상의 Know-how

FMEA를 제대로 실시하기 위해서는 아래의 내용들을 반드시 준수해야 한다.

- 1. FMEA를 실시하기 위한 사전 작업으로서 ETA및 FTA를 실시하고 DATA를 정량화 하였으면 별다른 어려움 없이 문제를 해결할 수 있는 단계에 있으므로, 마무리한다는 마음가짐으로 Chart를 작성한다.
- 2. FMEA 실시를 위한 FTA전개 결과와 비교할 때 FMEA전개 사상이 다소 차이가 날수 있는데 이때는 당황하지 말고, L-Matrix표의 전개내용을 토대로 재검토를 실시한다.
- 3. FMEA는 경우에 따라서 제품생산을 중지할 때까지 지속적으로 관리하고 전개시켜야 하는 특성을 지니고 있으므로 일회용이라는 생각을 버리고, 개발EVENT(Design Review)의 일부분으로 인식하여 관리해야 한다.
- 4. FMEA를 정도있게 실시하려면 고장물리 혹은 전기·화학적인 사상의 도입이 필요하며 경우에 따라서는 기술적인 분석도 수반해야 한다.

FMEA 실시에 의한 제품 신뢰성 확보

FMEA의 실시결과에 대해 FMEA Chart 한 장으로 문제가 해결되는 것은 아니며, 각 항목별 FMEA Chart가 경우에 따라서는 설계 변경점 관리를 포함해서 수십 장 이상 전개 될 수 있음을 인식하고 제품 신뢰성 보증활동을 전개해야 하겠다.

- 1. FMEA 결과는 설계변경의 이력관리 자료로서 활용해야 하겠다.
- 2. FMEA 결과는 고장해석을 위한 기본자료로서 활용하고, FMEA전개를 위해 사전에 작업한 각종 DATA의 활용도를 높여야 하겠다.
- 3. FMEA 결과를 이용해서 설계 문제점의 사전제거 및 생산단계에서 발생할 수 있는 각종 문제점을 제거함으로써 전도형 신뢰성 보증활동을 강화한다.
- 4. FMEA 결과는 1차,2차,3차 ~ N차 까지 전개시켜 나감으로써 지속적인 RPN의 개선(DOWN)을 유도한다.
- 5. FMEA의 지속적인 관리에 의한 제품 신뢰성 확보를 위해서는 SPC및 DOE개념의 품질 및 신뢰성 기법의 접목과 사내 기술력 향상이 필요하다.

FMEA 실시 결과 사후관리

- △ 설계자가 생각하지 못했던 신뢰성 문제점에 대한 대책은 설계보완 대책과 관련부서 및 협력회사에서 지원되어야 할 대책으로 구분될 수 있으며, 1차적으로 제품/부품의 구조변경 및 내구성 확보 위한 설계변경을 실시하고, 관련부서 및 협력회사에서 지원되어야 할 사항을 정리하여 도면 내 주기 난에 명확히 명기하여 도면의 완성도를 높여야 함.
- 공정FMEA 결과대책도 가급적이면 설계적으로 개선될 수 있도록 대책을 강구하여 설계변경 및 도면에 반영하며, 중요품질 특성에 대한 사항은 QC공정도에 반영함.
- □ 대책에 대한 검증은 제품인정시험, 부품인정시험, 부품검사, 제품검사 및 공정검사 등을 통하여 실시할 수 있으며, 구체적인 시험 및 검사항목을 명확히 명시함.
 - ↓ 시험 및 검사방법이 기존에 없었던 신규 시험 및 검사항목일 경우는 구체적으로 시험/검사 조건, 시료수, 방법, 판정기준 등을 명확히 설정하여, 도면/부품규격/검사규격의 제정 및 개정이 이루어져야 함. 또한 시험 및 검사 설비/Jig 등을 필요로 할 경우는 투자계획에 반영함.
- △ 제품인정시험 및 신뢰성시험 시 검증되어야 할 시험항목은 매 Event별 인정시험기획서에 반영되어 설계대책의 적합성을 검증 하여야 함.
- □ 대책적용을 위한 일정이 각기 다르므로, 매Event별 사전기술 검토회 시 부서별 대책 실시여부를 확인하고, 매 Event별 DR 시 FMEA실시 결과 대책의 적용결과를 최종 종합 보고함.
- 应 설계대책 적용결과 결정된 상세 Spec.중에서 치명적인 특성치를 유지/관리하기 위해 이를 CTQ로 선정하여 관리함.